Traditional solar modules are designed to capture as much light energy as possible on one side and convert that into electrical power, while any residual light is reflected away. A recent innovation in solar panel technology allows for light to pass through areas in the module and is re-captured on the back side for increased efficiency. These are known as bifacial solar panels. Many of these panels have a slim profile and limited framing dimensions to increase the surface area and collect as much energy as possible.
An ideal application for these new solar panels are on top of white membrane roofs, already designed to reflect light, to increase the efficiency of the total array. In a study conducted by a leading solar panel manufacturer, LONGi, panels were found to be 10-12% more efficient in baseline comparisons. Depending on the field application the efficiency gains can be as dramatic as 27% when combined with a tracking system to follow the path of the sun throughout the day.
A key benefit in analyzing the use case is the reduction in the overall array size, racking requirements, and balance of system components as more power can be produced per Sq/ft as compared to traditional systems. While these bifacial solar panels carry a slight cost premium today, this can typically be more than accounted for in efficiency gains and array size reductions. Additional applications could include building integrated solar installations and wall mounted solar to increase efficiencies with building reflective surfaces.
Melink Corporation is deploying bifacial solar panel technology at its new HQ2 building. This will help to further offset the buildings energy usage and drive to net-zero energy footprint. The modules will be part of an enhanced parking lot solar canopy that will include car charging stations for electric vehicles. In addition to our own building, several arrays that are currently in development by the Melink Solar team include bifacial module technology.